skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reali, Luca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Stellar evolution predicts the existence of a mass gap for black hole remnants produced by pair-instability supernova dynamics, whose lower and upper edges are very uncertain. We study the possibility of constraining the location of the upper end of the pair-instability mass gap, which is believed to appear around m min 130 M , using gravitational wave observations of compact binary mergers with next-generation ground-based detectors. While high metallicity may not allow for the formation of first-generation black holes on the “far side” beyond the gap, metal-poor environments containing population III stars could lead to such heavy black hole mergers. We show that, even in the presence of contamination from other merger channels, next-generation detectors will measure the location of the upper end of the mass gap with a relative precision close to Δ m min / m min 4 % ( N det / 100 ) 1 / 2 at 90% CL, where N det is the number of detected mergers with both members beyond the gap. These future observations could reduce current uncertainties in nuclear and astrophysical processes controlling the location of the gap. Published by the American Physical Society2024 
    more » « less
  3. NA (Ed.)
    General relativity (GR) has proven to be a highly successful theory of gravity since its inception. The theory has thrivingly passed numerous experimental tests, predominantly in weak gravity, low relative speeds, and linear regimes, but also in the strong-field and very low-speed regimes with binary pulsars. Observable gravitational waves (GWs) originate from regions of spacetime where gravity is extremely strong, making them a unique tool for testing GR, in previously inaccessible regions of large curvature, relativistic speeds, and strong gravity. Since their first detection, GWs have been extensively used to test GR, but no deviations have been found so far. Given GR’s tremendous success in explaining current astronomical observations and laboratory experiments, accepting any deviation from it requires a very high level of statistical confidence and consistency of the deviation across GW sources. In this paper, we compile a comprehensive list of potential causes that can lead to a false identification of a GR violation in standard tests of GR on data from current and future ground-based GW detectors. These causes include detector noise, signal overlaps, gaps in the data, detector calibration, source model inaccuracy, missing physics in the source and in the underlying environment model, source misidentification, and mismodeling of the astrophysical population. We also provide a rough estimate of when each of these causes will become important for tests of GR for different detector sensitivities. We argue that each of these causes should be thoroughly investigated, quantified, and ruled out before claiming a GR violation in GW observations. 
    more » « less
    Free, publicly-accessible full text available February 13, 2026
  4. null (Ed.)